Fundamentals of Wave Propagation
نویسنده
چکیده
In this chapter and Chapter 4, waves are considered in 3-D, in general. However, in some applications such as in integrated optics in which propagation of waves on a surface is often considered, 2-D waves are of interest. For example, see Chapter 19 on dense wavelength division multiplexing. Two-dimensional equations are simpler because one of the space variables, say, y is omitted from the equations. Hence, the results discussed in 3-D in what follows can be easily reduced to the 2-D counterparts. Electromagnetic (EM) waves will be of main concern. They are generated when a time-varying electric field Eðr; tÞ produces a time-varying field Hðr; tÞ. EM waves propagate through unguided media such as free space or air and in guided media such as an optical fiber or the medium between the earth’s surface and the ionosphere. In this chapter, we will be mainly concerned with unbounded media. Spherical waves result when a source such as an antenna emits EM energy as shown in Figure 3.1(a). At a far away distance from the source, the spherical wave appears like a plane wave with uniform properties at all points of the wavefront, as seen in Figure 3.1(b). Another example would be an electric dipole directed along the z-axis, located at the origin, and oscillating with the circular frequency w. It generates electric and magnetic fields with a complicated expression, but far from the origin where the fields look like plane waves. A perfect plane wave does not exist physically, but it is a component that is very useful in modeling all kinds of waves. Waves propagate in a medium. In the case of optical waves, the optical medium is characterized by a quantity n called the refractive index. It is the ratio of the speed of light in free space to that of the speed of light in the medium. The medium is homogeneous if n is constant, otherwise, it is inhomogeneous. In this chapter, we will assume that the medium is homogeneous. The chapter consists of seven sections. How waves come about and some of their fundamental properties are discussed in Section 3.2. The fundamental properties of EM waves and the Kirchoff equations that characterize them are discussed in Section 3.3. The phasor representation is reviewed in Section 3.4. Wave equations,
منابع مشابه
Study on Free Vibration and Wave Power Reflection in Functionally Graded Rectangular Plates using Wave Propagation Approach
In this paper, the wave propagation approach is presented to analyze the vibration and wave power reflection in FG rectangular plates based on the first order shear deformation plate theory. The wave propagation is one of the useful methods for analyzing the vibration of structures. This method gives the reflection and propagation matrices that are valuable for the analysis of mechanical energy...
متن کامل1 Fundamentals of Optics
In this chapter, we discuss some of the fundamentals of optics. We first cover the electromagnetic (EM) spectrum, which shows that the visible spectrum occupies just a very narrow portion of the entire EM spectrum. We then discuss geometrical optics and wave optics. In geometrical optics, we formulate the propagation of light rays in terms of matrices, whereas in wave optics we formulate wave p...
متن کاملTorsional wave propagation in 1D and two dimensional functionally graded rod
In this study, torsional wave propagation is investigated in a rod that are made of one and two dimensional functionally graded material. Firstly, the governing equations of the wave propagation in the functionally graded cylinder derived in polar coordinate. Secondly, finite difference method is used to discretize the equations. The Von Neumann stability approach is used to obtain the time ste...
متن کاملکاربرد روش معادله سهموی در تحلیل مسائل انتشار امواج داخل ساختمان
With the rapid growth of indoor wireless communication systems, the need to accurately model radio wave propagation inside the building environments has increased. Many site-specific methods have been proposed for modeling indoor radio channels. Among these methods, the ray tracing algorithm and the finite-difference time domain (FDTD) method are the most popular ones. The ray tracing approach ...
متن کاملSimulation of Wave Propagation over Coastal Structures Using WCSPH Method
In this paper a space-averaged Navier–Stokes approach was deployed to simulate the wave propagation over coastal structures. The developed model is based on the smoothed particle hydrodynamic (SPH) method which is a pure Lagrangian approach and can handle large deformations of the free surface with high accuracy. In this study, the large eddy simulation (LES) turbulent model was coupled with th...
متن کامل